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The usual power loss method of evaluating the damping constant of
cavities and the attenuation constant of waveguides, as caused by finite
wall conductivity, breaks down in the case of degenerate modes and fails
to predict the coupling between degenerate modes L2 Papadopoulos has
treated the problem by means of a perturbation method involving an
expansion of the fields in terms of the modes for the ideal cavity or
waveguide 2. In this paper a variational formulation is presented that
permits the eigenvalues for the lossy case to be readily computed. This
formulation turns out to be a simple extension of the usual power loss
method and in addition to giving the damping constant it also shows that
there is an equal shift, in the resonant frequency in the case of a cavity,
and in the phase constant for a waveguide. In addition the coupling
between the degenerate modes is obtained. Furthermore it is shown that
the new non-degenerate sets of coupled modes form an orthogonal set.
The above properties all arise from the characteristics of the matrix
eigenvalue problem which arises when the Rayleigh~Ritz technique is
used in conjunction with the variational formulation of the boundary value
problem.

For a cavity with N degenerate modes let En’ ﬁn be the field for the
nth mode with resonant frequency W, when there are no losses. For
finite losses let the field be represented by

E-= ?anEn’H = ?aan

with resonant frequency «w. The variational formulation then leads to the
following matrix eigenvalue problem:

|P-AW| =0,

where P and W are N by N matrices with elements
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Zo = (l-l-j)Rm is the surface impedance, and J. = n x H, is the current on
the cavity surfaces S for the ith mode. Since P and W are real and
symmetric it follows that A must be real. Thus if we let ® o+ Aw
where |Aw| << ¢ it follows that A~-(2Aw)/(1-j)and hence Aw = - a + ja,
i.e., a damping constant a is introduced and an equal decrease in the
resonant frequency occurs. For each root A; a solution for a set of
coefficients a} may be found. These determine the coupling between the
original degenerate modes of the ideal cavity.

The case of the waveguide leads to a similar eigenvalue problem
although the variational formulation is somewhat more involved than that
for the cavity. If B ,H, are the fields of the nth degenerate mode in a
lossless guide then it is found that

[P-AwW]| =0

where P and W are matrices with elements
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where y_is the propagation constant for the degenerate modes in the loss
free guige and y is the propagation constant for the lossy guide. Again
since A must be real it follows that Ay =y ~ y = a - joa where a is the
attenuation constant and also the change in here jB =y . ForN
degenerate modes N solutions for A exist as in the case of the cavity.

1. S. Kuhn, ''Calculation of Attenuation in Waveguides,'' Proc. IEE 93,
Part ITIIA, 663-678 (1946).

2., V. M. Papadopoulos, ''Propagation of Electromagnetic Waves in

Cylindrical Waveguides with Imperfectly Conducting Walls, ' Quart.
J. Mech. and Appl. Math. 7, 325-334 (1954).

21



